Hoare Logic

Specifications of the form $\{P\} C\{Q\},[P] C[Q]$

Rule	Partial Hoare Logic
Assignment	$\vdash\{P[E / V]\} V:=E\{P\}$
	$\vdash P \Rightarrow P^{\prime}, \vdash\left\{P^{\prime}\right\} C\{Q\}$
Precondition Strengthening	$\vdash\{P\} C\{Q\}$
	$\stackrel{\vdash}{ } \stackrel{P}{ }+C\{Q\}, \vdash Q^{\prime} \Rightarrow Q$
Postcondition Weakening	$\vdash\{P\} C\{Q\}$
	$\stackrel{\vdash\left\{P_{1}\right\} C\left\{Q_{1}\right\}, \quad \vdash\left\{P_{2}\right\} C\left\{Q_{2}\right\}}{ }$
Conjunction	$\vdash\left\{P_{1} \wedge P_{2}\right\} C\left\{Q_{1} \wedge Q_{2}\right\}$
	$\vdash\left\{P_{1}\right\} C\left\{Q_{1}\right\}, \quad \vdash\left\{P_{2}\right\} C\left\{Q_{2}\right\}$
Disjunction	$\vdash\left\{P_{1} \vee P_{2}\right\} C\left\{Q_{1} \vee Q_{2}\right\}$
	$\stackrel{\vdash}{-}$ P\} $C_{1}\{Q\}, \quad \vdash\{Q\} C_{2}\{R\}$
Sequencing	$\vdash\{P\} C_{1} ; C_{2}\{R\}$
	$\vdash\{P\} C\{Q\}$
Blocks	$\bar{\vdash}$ \{P\}BEGIN VAR $V_{1} ; \ldots ;$ VAR $V_{n} ; C \operatorname{END}\{Q\}$
	$\vdash\{P \wedge S\} C\{Q\}, \vdash P \wedge \neg S \Rightarrow Q$
Single If	$\vdash \mathrm{IF} S$ THEN $C\{Q\}$
	$\stackrel{-}{ }+P \wedge S\} C_{1}\{Q\}, \quad\{P \wedge \neg S\} C_{2}\{Q\}$
Double If	$\vdash\{P\}$ IF S THEN C_{1} ELSE $C_{2}\{Q\}$
	$\vdash\{P \wedge S\} C\{P\}$
While	\digamma ¢ ${ }^{\text {P }}$ WHILE S Do $C\{P \wedge \neg S\}$
	$\vdash\left\{P \wedge\left(E_{1} \leq V\right) \wedge\left(V \leq E_{2}\right)\right\} C\{P[V+1 / V]\}$
For Rule	$\overline{\vdash\left\{P\left[E_{1} / V\right] \wedge\left(E_{1} \leq E_{2}\right)\right\} \text { FOR } V:=E_{1} \text { UNTIL } E_{2} \text { DO } C\left\{P\left[E_{2}+1 / V\right]\right\}}$
For Axiom	$\vdash\left\{P \wedge\left(E_{2}<E_{1}\right)\right\}$ FOR $V:=E_{1}$ UNTIL E_{2} DO $C\{P\}$
Array Assignment	$\vdash\left\{P\left[A\left\{E_{1} \leftarrow E_{2}\right\} / A\right]\right\} A\left(E_{1}\right):=E_{2}\{P\}$

Reasoning About Arrays

$\vdash A\left\{E_{1} \leftarrow E_{2}\right\}\left(E_{1}\right)=E_{2}$
$E_{1} \neq E_{3} \Rightarrow \vdash A\left\{E_{1} \leftarrow E_{2}\right\}\left(E_{3}\right)=A\left(E_{3}\right)$

Termination

If we assume that all functions in expressions terminate then total correctness is as partial correctness except for the WHILE rule.
$\frac{\text { In this case: }}{\vdash[P \wedge S \wedge(E=n)] C[P \wedge(E<n)], \quad P \wedge S \Rightarrow E \geq 0} \quad \vdash[P]$ WHILE S DO $C[P \wedge \neg S] \quad$.
Where E is an integer-valued expression and n is an auxilliary variable not occuring in P, C, S and E.

Verification Conditions

We require annotation in the following places:

1. Before each command C_{i} in a sequence $C_{1} ; C_{2} ; \ldots ; C_{n}$ which is not an assigment command
2. After the word DO in WHILE and FOR commands

Rule	VCs
Assignment	$P \Rightarrow Q[E / V]$
Sequencing	$\left[\{P\} C_{1} ; \ldots ; C_{n-1}\{R\}\right]_{V C},\left[\{R\} C_{n}\{Q\}\right]_{V C}($ for assignments, $R=Q[E / V])$
Blocks	$[\{P\} C\{Q\}]_{V C}($ note block and P, Q variables disjoint)
Single If	$(P \wedge S) \Rightarrow Q,[\{P \wedge S\} C\{Q\}]_{V C}$
Double If	$\left[\{P \wedge S\} C_{1}\{Q\}\right]_{V C},\left[\{P \wedge \neg S\} C_{2}\{Q\}\right]_{V C}$
While	$P \Rightarrow R, R \wedge \neg S \Rightarrow Q,[\{R \wedge S\} C\{R\}]_{V C}$
For Rule	$P \Rightarrow R\left[E_{1} / V\right]$
	$R\left[E_{2}+1 / V\right] \Rightarrow Q \quad$, with usual conditions on loop variables)
For Axiom	$\left[\left\{R \wedge E_{1} \leq V \wedge V \leq E_{2}\right\} C\{R[V+1 / V]\}\right]_{V C}$
Array Assignment	$P \wedge E_{2}<E_{1} \Rightarrow Q$

Termination

Most rules are unchanged, but the WHILE rule has these other verification conditions:

- $P \Rightarrow R$
- $R \wedge \neg S \Rightarrow Q$
- $R \wedge S \Rightarrow E \geq 0$
- $[[R \wedge S \wedge(E=n)] C[R \wedge(E<n)]]_{V C}$

Program Refinement

$[P, Q]=\{C \mid \vdash[P] C[Q]\}$
This is added to the syntax of a programming language to give a wide spectrum language. However, such programs are not directly executable. Note that in such a language strictly every command should be represented as a single element set.

Rule	Refinement
Skip	$[P, P] \supseteq\{S K I P\}$
Assignment	$[P[E / V], P] \supseteq\{V:=E\}$
Precondition Weakening	$[P, Q] \supseteq[R, Q]$ if $\vdash P \Rightarrow R$
Postcondition Strengthening	$[P, Q] \supseteq[P, R]$ if $\vdash R \Rightarrow Q$
Sequencing	$[P, Q] \supseteq[P, R] ;[R, Q]$
Blocks	$[P, Q] \supseteq$ BEGIN VAR $\vee ;[P, Q]$ END
Single If	$[P, Q] \supseteq$ IF S THEN $[P \wedge S, Q]$ if $\vdash P \wedge \neg S \Rightarrow Q$
Double If	$[P, Q] \supseteq$ IF S THEN $[P \wedge S, Q]$ ELSE $[P \wedge \neg S, Q]$
While	$[P, P \wedge \neg S] \supseteq$ WHILE S DO $[P \wedge S \wedge(E=n), P \wedge(E<n)]$ if $\vdash P \wedge S \Rightarrow E \geq 0$

Higher Order Logic

Types are expressions that denote sets of values. Terms of HOL must be well-typed in that a type assignment to subterms exists. All binding is done via λ abstractions only, but syntactic sugar is provided for the common cases. Tuples are iterated pairs and may contain hetrogenous types.

Conditionals are represented as $t \rightarrow\left(t_{1} \mid t_{2}\right)$. Hilberts ϵ-operator lets you refer to values you know exist but aren’t able to write down. It is defined by $\vdash \forall P x . P x \Rightarrow P(\epsilon P)$. Note that if the variable f does not occur in t then λx.t is equivalent to $\epsilon f . \forall x . f(x)=t$. This can be used to construct pattern matching functions and recursive functions.

Peano's Axioms

1. There is a number 0
2. There is a function Suc called the successor function such that if n is a number then Suc n is a number
3. 0 is not the successor of any number
4. If two numbers have the same successor then they are equal
5. If a property holds of 0 and if whenever it holds of a number then it also holds of the successor of the number, then the property holds of all numbers

Primitive Recursion

$\vdash \forall x: \alpha . \forall f: a \rightarrow n u m \rightarrow \alpha . \exists f u n: n u m \rightarrow \alpha .(f u n 0=x) \wedge(\forall m . f u n(S u c m)=f($ fun $m) m)$
For example: $\vdash+=\operatorname{PrimRec}\left(\lambda x_{1} . x_{1}\right)\left(\lambda f m x_{1} \cdot \operatorname{Suc}\left(f x_{1}\right)\right)$
Primitive recursion can be extended to other structures such as lists.

Semantic Embedding

With deep embedding, we define the semantics of a term structure by building a function in the host logic which pattern matches on it and assigns some meaning function. This allows theorems to be proved about the embedded terms very simply. With shallow embedding, notational conventions are set up for translating term structures into logic terms in a syntactic manner: however, only theorems in the embedded language are provable (i.e. we cannot quantify over program terms).
We can embed our programming language in HOL using the techniques I will go on to describe. Define the type state $=$ string \rightarrow num, so we can say, e.g. $\llbracket X+1 \rrbracket=\lambda s . s^{\prime} X^{\prime}+1$.
Now we can say that $\operatorname{Spec}(p, c, q)=\forall s_{1} s_{2} . p s_{1} \wedge c\left(s_{1}, s_{2}\right) \Rightarrow q s_{2}$ where the semantics of commands are:

Rule	Semantics
Skip	$\llbracket S K I P \rrbracket\left(s_{1}, s_{2}\right)=s_{1}=s_{2}$
Assignment	$\llbracket V:=E \rrbracket=A \operatorname{ssign}\left({ }^{\prime} V^{\prime}, \llbracket E \rrbracket\right)$
Sequencing	$\llbracket C_{1} ; C_{2} \rrbracket=\operatorname{Seq}\left(\llbracket C_{1} \rrbracket \llbracket C_{2} \rrbracket\right)$
If	\llbracket IF B THEN C_{1} ELSE $C_{2} \rrbracket=I f\left(\llbracket B \rrbracket, \llbracket C_{1} \rrbracket, \llbracket C_{2} \rrbracket\right)$
While	\llbracket WHILE B DO $C \rrbracket=$ While $(\llbracket B \rrbracket, \llbracket C \rrbracket)$

Where:
$\operatorname{Assign}(v, e)\left(s_{1}, s_{2}\right)=\left(s_{2}=\operatorname{Bnd}\left(e, v, s_{1}\right)\right)$
$\operatorname{Bnd}(e, v, s)=\lambda x .(x=v \rightarrow e s \mid s x)$
$\operatorname{Seq}\left(c_{1}, c_{2}\right)\left(s_{1}, s_{2}\right)=\exists s . c_{1}\left(s_{1}, s\right) \wedge c_{2}\left(s, s_{2}\right)$
$\operatorname{If}\left(b, c_{1}, c_{2}\right)\left(s_{1}, s_{2}\right)=\left(b s_{1} \rightarrow c_{1}\left(s_{1}, s_{2}\right) \mid c_{2}\left(s_{1}, s_{2}\right)\right)$
While $(b, c)\left(s_{1}, s_{2}\right)=\exists n . \operatorname{Iter}(n)(b, c)\left(s_{1}, s_{2}\right)$
$\operatorname{Iter}(0)(b, c)\left(s_{1}, s_{2}\right)=F$
$\operatorname{Iter}(\operatorname{Succ} n)(b, c)\left(s_{1}, s_{2}\right)=\operatorname{If}(b, \operatorname{Seq}(c, \operatorname{Iter}(n)(b, c)), \operatorname{Skip})\left(s_{1}, s_{2}\right)$
Note that using these definitions all the rules of Hoare logic can be turned into logical statements about which Spec terms imply each other (with universally quantified free variables) and vice versa.

Termination

A termination assertion is of the form $\operatorname{Halts}(p, c)=\forall s_{1} \cdot p s_{1} \Rightarrow \exists s_{2} . c\left(s_{1}, s_{2}\right)$, This is sufficient for languages without nondeterminism i.e. where $\vdash \operatorname{Det} \llbracket C \rrbracket$ given Det $c=\forall s s_{1} s_{2} . c\left(s, s_{1}\right) \wedge c\left(s, s_{2}\right) \Rightarrow\left(s_{1}=s_{2}\right)$. It is straightforward to derive HOL theorems stating termination of all commands except for WHILE, which is shown here (including the variant x):
$\forall b c x .(\forall n . \operatorname{Spec}((\lambda s . p s \wedge b s \wedge(s x=n)), c,(\lambda s . p s \wedge s x<n))) \wedge \operatorname{Halts}((\lambda s . p s \wedge b s), c) \Rightarrow \operatorname{Halts}(p, W h i l e(b, c))$

Weakest Preconditions

Define $p \Leftarrow q=\forall s . q s \Rightarrow p s$ to mean p is weaker than q . Now we have:
Weakest $P=\epsilon p . P p \wedge \forall p^{\prime} . P p^{\prime} \Rightarrow\left(p \Leftarrow p^{\prime}\right)$
$w l p(c, q)=W e a k e s t(\lambda p \cdot \operatorname{Spec}(p, c, q))$
$w p(c, q)=W e a k e s t(\lambda p \cdot \operatorname{TotalSpec}(p, c, q))$
In practice we use the facts that:
$\vdash w l p(c, q)=\lambda s \cdot \forall s^{\prime} . c\left(s, s^{\prime}\right) \Rightarrow q s^{\prime}$
$\vdash w p(c, q)=\lambda s .\left(\exists s^{\prime} . c\left(s, s^{\prime}\right)\right) \wedge \forall s^{\prime} . c\left(s, s^{\prime}\right) \Rightarrow q s^{\prime}$
The relationship to Hoare logic is that:
$\vdash \operatorname{Spec}(p, c, q)=\forall s . p s \Rightarrow w l p(c, q) s$
$\vdash \operatorname{TotalSpec}(p, c, q)=\forall s . p s \Rightarrow w p(c, q) s$

Rule	WP	WLP
Skip	q	
Assignment	$\lambda s . q\left(B n d(\llbracket E \rrbracket s)^{\prime} V^{\prime} s\right)$	
Double If	$\lambda s .\left(\llbracket B \rrbracket s \rightarrow w p\left(\llbracket C_{1} \rrbracket, s\right) \mid w p\left(\llbracket C_{2} \rrbracket, s\right)\right)$	$\lambda s .\left(\llbracket B \rrbracket s \rightarrow w l p\left(\llbracket C_{1} \rrbracket, s\right) \mid w l p\left(\llbracket C_{2} \rrbracket, s\right)\right)$
Sequencing	$\vdash \operatorname{Det} \llbracket C_{1} \rrbracket \Rightarrow w p\left(\llbracket C_{1} \rrbracket, w p\left(\llbracket C_{2} \rrbracket, q\right)\right)$	$\vdash w l p\left(\llbracket C_{1} \rrbracket, w l p\left(\llbracket C_{2} \rrbracket, q\right)\right)$
While	\vdash Det $C \Rightarrow \exists n . I t e r _w p n \llbracket B \rrbracket \llbracket C \rrbracket q s$	$\vdash \forall n . I t e r _w p n \llbracket B \rrbracket \llbracket C \rrbracket q s$

Where:
Iter_wp $0 b c q=\neg b \wedge p$
Iter_wp $(n+1) b c q=b \wedge w p(c$, Iter_wp $n b c p)$

