Hoare Logic

Rule	Partial Hoare Logic
Assignment	$\vdash \{P[E/V]\}V := E\{P\}$
	$\vdash P \Rightarrow P', \vdash \{P'\}C\{Q\}$
Precondition Strengthening	$\vdash \{P\}C\{Q\}$
	$\vdash \{P\}C\{Q\}, \vdash Q' \Rightarrow Q$
Postcondition Weakening	$\vdash \{P\}C\{Q\}$
	$\vdash \{P_1\}C\{Q_1\}, \vdash \{P_2\}C\{Q_2\}$
Conjunction	$\vdash \{P_1 \land P_2\}C\{Q_1 \land Q_2\}$
	$\frac{\vdash \{P_1\}C\{Q_1\}, \vdash \{P_2\}C\{Q_2\}}{\vdash \{Q_1\}, \vdash \{P_2\}C\{Q_2\}}$
Disjunction	$\vdash \{P_1 \lor P_2\}C\{Q_1 \lor Q_2\}$
	$\vdash \{P\}C_1\{Q\}, \vdash \{Q\}C_2\{R\}$
Sequencing	$\vdash \{P\}C_1; C_2\{R\}$
D 1 1	$\vdash \{P\}C\{Q\}$
Blocks	$\vdash \{P\} \texttt{BEGIN VAR } V_1; \dots; \texttt{VAR } V_n; C \texttt{END}\{Q\}$
	$\frac{\vdash \{P \land S\} \cup \{Q\}, \vdash P \land \neg S \Rightarrow Q}{\vdash \neg \neg \neg \neg S \Rightarrow Q}$
Single If	$\vdash \text{IF } S \text{ THEN } U\{Q\}$
	$\frac{\vdash \{P \land S\}C_1\{Q\}, \{P \land \neg S\}C_2\{Q\}}{\vdash (P) \neg S \neg $
Double If	$\vdash \{P\} \text{IF } S \text{ THEN } C_1 \text{ ELSE } C_2 \{Q\}$
	$\frac{\vdash \{P \land S\} \cup \{P\}}{\vdash (D) = 2}$
While	$\vdash \{P\} \text{ WHILE } S \text{ DO } C\{P \land \neg S\}$
	$ = \frac{\{P \land (E_1 \leq V) \land (V \leq E_2)\} \cup \{P[V+1/V]\}}{\{P[V+1/V]\}} $
For Rule	$\vdash \{P[E_1/V] \land (E_1 \le E_2)\} \text{FOR } V := E_1 \text{ UNTIL } E_2 \text{ DU } C\{P[E_2 + 1/V]\}$
For Axiom	$\vdash \{P \land (E_2 < E_1)\} \text{FUR } V := E_1 \text{ UNTIL } E_2 \text{ DO } C\{P\}$
Array Assignment	$\vdash \{P[A\{E_1 \leftarrow E_2\}/A]\}A(E_1) := E_2\{P\}$

Specifications of the form $\{P\}C\{Q\}, [P]C[Q]$

Reasoning About Arrays

 $\vdash A\{E_1 \leftarrow E_2\}(E_1) = E_2$ $E_1 \neq E_3 \Rightarrow \vdash A\{E_1 \leftarrow E_2\}(E_3) = A(E_3)$

Termination

 $\begin{array}{c} \text{In this case:} \\ \vdash [P \land S \land (E=n)]C[P \land (E < n)], \quad P \land S \Rightarrow E \geq 0 \\ \hline \quad \vdash [P] \texttt{WHILE } S \texttt{ DO } C[P \land \neg S] \end{array}$

Where E is an integer-valued expression and n is an auxilliary variable not occuring in P, C, S and E.

Verification Conditions

We require annotation in the following places:

- 1. Before each command C_i in a sequence $C_1; C_2; \ldots; C_n$ which is not an assignment command
- 2. After the word DO in <code>WHILE</code> and <code>FOR</code> commands

Rule	VCs	
Assignment	$P \Rightarrow Q[E/V]$	
Sequencing	$[\{P\}C_1; \ldots; C_{n-1}\{R\}]_{VC}, [\{R\}C_n\{Q\}]_{VC}$ (for assignments, $R = Q[E/V]$)	
Blocks	$[{P}C{Q}]_{VC}$ (note block and P, Q variables disjoint)	
Single If	$(P \land S) \Rightarrow Q, [\{P \land S\}C\{Q\}]_{VC}$	
Double If	$[\{P \land S\}C_1\{Q\}]_{VC}, [\{P \land \neg S\}C_2\{Q\}]_{VC}$	
While	$P \Rightarrow R, R \land \neg S \Rightarrow Q, [\{R \land S\}C\{R\}]_{VC}$	
For Rule	$P \Rightarrow R[E_1/V]$	
	$R[E_2 + 1/V] \Rightarrow Q , \text{ (with usual conditions on loop variables)}$	
	$[\{R \land E_1 \leq V \land V \leq E_2\} C \{R[V+1/V]\}]_{VC}$	
For Axiom	$P \wedge E_2 < E_1 \Rightarrow Q$	
Array Assignment	$P \Rightarrow Q[A(E_1 \leftarrow E_2)/A]$	

Termination

Most rules are unchanged, but the WHILE rule has these other verification conditions:

- $P \Rightarrow R$
- $R \land \neg S \Rightarrow Q$
- $R \wedge S \Rightarrow E \ge 0$
- $[[R \land S \land (E = n)]C[R \land (E < n)]]_{VC}$

Program Refinement

$[P,Q] = \{C \mid \vdash [P]C[Q]\}$

This is added to the syntax of a programming language to give a *wide spectrum* language. However, such programs are not directly executable. Note that in such a language strictly every command should be represented as a single element set.

Rule	Refinement	
Skip	$[P,P] \supseteq \{SKIP\}$	
Assignment	$[P[E/V], P] \supseteq \{V := E\}$	
Precondition Weakening	$[P,Q] \supseteq [R,Q] \text{ if } \vdash P \Rightarrow R$	
Postcondition Strengthening	$[P,Q] \supseteq [P,R] \text{ if } \vdash R \Rightarrow Q$	
Sequencing	$[P,Q] \supseteq [P,R]; [R,Q]$	
Blocks	$[P,Q] \supseteq$ begin var V; $[P,Q]$ end	
Single If	$[P,Q] \supseteq \text{IF } S \text{ THEN } [P \land S,Q] \text{ if } \vdash P \land \neg S \Rightarrow Q$	
Double If	$[P,Q]\supseteq ext{IF} \ S \ ext{THEN} \ [P \wedge S,Q] \ ext{ELSE} \ [P \wedge eg S,Q]$	
While	$[P, P \land \neg S] \supseteq \text{ WHILE } S \text{ DO } [P \land S \land (E = n), P \land (E < n)] \text{ if } \vdash P \land S \Rightarrow E \ge 0$	

Higher Order Logic

Types are expressions that denote sets of values. Terms of HOL must be *well-typed* in that a type assignment to subterms exists. All binding is done via λ abstractions only, but syntactic sugar is provided for the common cases. Tuples are iterated pairs and may contain hetrogenous types.

Conditionals are represented as $t \to (t_1|t_2)$. Hilberts ϵ -operator lets you refer to values you know exist but aren't able to write down. It is defined by $\vdash \forall P x.P x \Rightarrow P(\epsilon P)$. Note that if the variable f does not occur in t then $\lambda x.t$ is equivalent to $\epsilon f.\forall x.f(x) = t$. This can be used to construct pattern matching functions and recursive functions.

Peano's Axioms

- 1. There is a number 0
- 2. There is a function Suc called the successor function such that if n is a number then Suc n is a number
- 3. 0 is not the successor of any number
- 4. If two numbers have the same successor then they are equal
- 5. If a property holds of 0 and if whenever it holds of a number then it also holds of the successor of the number, then the property holds of all numbers

Primitive Recursion

 $\vdash \forall x : \alpha.\forall f : a \to num \to \alpha.\exists fun : num \to \alpha.(fun \ 0 = x) \land (\forall m.fun(Suc \ m) = f(fun \ m) \ m)$ For example: $\vdash + = PrimRec(\lambda x_1.x_1)(\lambda f \ m \ x_1.Suc(f \ x_1))$

Primitive recursion can be extended to other structures such as lists.

Semantic Embedding

With *deep embedding*, we define the semantics of a term structure by building a function in the host logic which pattern matches on it and assigns some meaning function. This allows theorems to be proved about the embedded terms very simply. With *shallow embedding*, notational conventions are set up for translating term structures into logic terms in a syntactic manner: however, only theorems in the embedded language are provable (i.e. we cannot quantify over program terms).

We can embed our programming language in HOL using the techniques I will go on to describe. Define the type $state = string \rightarrow num$, so we can say, e.g. $[X + 1] = \lambda s \cdot s' X' + 1$.

Now we can say that $Spec(p, c, q) = \forall s_1 s_2 p s_1 \land c(s_1, s_2) \Rightarrow q s_2$ where the semantics of commands are:

Rule	Semantics	
Skip	$[SKIP](s_1, s_2) = s_1 = s_2$	
Assignment	$\llbracket V := E \rrbracket = Assign(V', \llbracket E \rrbracket)$	
Sequencing	$[\![C_1;C_2]\!] = Seq([\![C_1]\!],[\![C_2]\!])$	
If	$[\![IF B THEN C_1 ELSE C_2]\!] = If([\![B]\!], [\![C_1]\!], [\![C_2]\!])$	
While	$\llbracket \texttt{WHILE} \ B \ \texttt{DO} \ C \rrbracket = While(\llbracket B \rrbracket, \llbracket C \rrbracket)$	

Where:

$$\begin{split} Assign(v, e)(s_1, s_2) &= (s_2 = Bnd(e, v, s_1))\\ Bnd(e, v, s) &= \lambda x. (x = v \to e \, s | s \, x)\\ Seq(c_1, c_2)(s_1, s_2) &= \exists s. c_1(s_1, s) \wedge c_2(s, s_2)\\ If(b, c_1, c_2)(s_1, s_2) &= (b \, s_1 \to c_1(s_1, s_2) | c_2(s_1, s_2))\\ While(b, c)(s_1, s_2) &= \exists n. Iter(n)(b, c)(s_1, s_2)\\ Iter(0)(b, c)(s_1, s_2) &= F\\ Iter(Succ\, n)(b, c)(s_1, s_2) &= If(b, Seq(c, Iter(n)(b, c)), Skip)(s_1, s_2) \end{split}$$

Note that using these definitions all the rules of Hoare logic can be turned into logical statements about which *Spec* terms imply each other (with universally quantified free variables) and vice versa.

Termination

A termination assertion is of the form $Halts(p, c) = \forall s_1 . p \ s_1 \Rightarrow \exists s_2 . c(s_1, s_2)$, This is sufficient for languages without nondeterminism i.e. where $\vdash Det[\![C]\!]$ given $Det \ c = \forall s \ s_1 \ s_2 . c(s, s_1) \land c(s, s_2) \Rightarrow (s_1 = s_2)$. It is straightforward to derive HOL theorems stating termination of all commands except for WHILE, which is shown here (including the variant x):

 $\forall b c x. (\forall n. Spec((\lambda s. p \ s \land b \ s \land (s \ x = n)), c, (\lambda s. p \ s \land s \ x < n))) \land Halts((\lambda s. p \ s \land b \ s), c) \Rightarrow Halts(p, While(b, c))$

Weakest Preconditions

Define $p \leftarrow q = \forall s.q \, s \Rightarrow p \, s$ to mean p is weaker than q. Now we have:

 $Weakest\,P = \epsilon p.P\,p \wedge \forall p'.P\,p' \Rightarrow (p \Leftarrow p')$

 $wlp(c,q) = Weakest(\lambda p.Spec(p,c,q))$

 $wp(c,q) = Weakest(\lambda p.TotalSpec(p,c,q))$

In practice we use the facts that:

 $\vdash wlp(c,q) = \lambda s. \forall s'. c(s,s') \Rightarrow q \, s'$

 $\vdash wp(c,q) = \lambda s.(\exists s'.c(s,s')) \land \forall s'.c(s,s') \Rightarrow q \, s'$

The relationship to Hoare logic is that:

 $\vdash Spec(p,c,q) = \forall s.p \, s \Rightarrow wlp(c,q) \, s$

 $\vdash TotalSpec(p,c,q) = \forall s.p \, s \Rightarrow wp(c,q) \, s$

Rule	WP	WLP	
Skip	q		
Assignment	$\lambda s.q(Bnd(\llbracket E \rrbracket s) \ 'V' \ s)$		
Double If	$\lambda s.(\llbracket B \rrbracket s \to wp(\llbracket C_1 \rrbracket, s) wp(\llbracket C_2 \rrbracket, s))$	$\lambda s.(\llbracket B \rrbracket s \to wlp(\llbracket C_1 \rrbracket, s) wlp(\llbracket C_2 \rrbracket, s))$	
Sequencing	$\vdash Det \ \llbracket C_1 \rrbracket \Rightarrow wp(\llbracket C_1 \rrbracket, wp(\llbracket C_2 \rrbracket, q))$	$\vdash wlp(\llbracket C_1 \rrbracket, wlp(\llbracket C_2 \rrbracket, q))$	
While	$\vdash Det \ C \Rightarrow \exists n. Iter_wp \ n \ [\![B]\!] \ [\![C]\!] \ q \ s$	$\vdash \forall n. Iter_wp \ n \ \llbracket B \rrbracket \ \llbracket C \rrbracket \ q \ s$	

Where:

 $Iter_wp \ 0 \ b \ c \ q = \neg b \land p$

 $Iter_wp (n+1) b c q = b \land wp(c, Iter_wp n b c p)$