
Hoare Logic

Specifications of the form {P}C{Q}, [P ]C[Q]

Rule Partial Hoare Logic
Assignment ` {P [E/V ]}V := E{P}

Precondition Strengthening
` P ⇒ P ′, ` {P ′}C{Q}

` {P}C{Q}

Postcondition Weakening
` {P}C{Q}, ` Q′ ⇒ Q

` {P}C{Q}

Conjunction
` {P1}C{Q1}, ` {P2}C{Q2}
` {P1 ∧ P2}C{Q1 ∧Q2}

Disjunction
` {P1}C{Q1}, ` {P2}C{Q2}
` {P1 ∨ P2}C{Q1 ∨Q2}

Sequencing
` {P}C1{Q}, ` {Q}C2{R}

` {P}C1;C2{R}

Blocks
` {P}C{Q}

` {P}BEGIN VAR V1; . . . ; VAR Vn; C END{Q}

Single If
` {P ∧ S}C{Q}, ` P ∧ ¬S ⇒ Q

` IF S THEN C{Q}

Double If
` {P ∧ S}C1{Q}, {P ∧ ¬S}C2{Q}
` {P}IF S THEN C1 ELSE C2{Q}

While
` {P ∧ S}C{P}

` {P}WHILE S DO C{P ∧ ¬S}

For Rule
` {P ∧ (E1 ≤ V ) ∧ (V ≤ E2)}C{P [V + 1/V ]}

` {P [E1/V ] ∧ (E1 ≤ E2)}FOR V := E1 UNTIL E2 DO C{P [E2 + 1/V ]}
For Axiom ` {P ∧ (E2 < E1)}FOR V := E1 UNTIL E2 DO C{P}

Array Assignment ` {P [A{E1 ← E2}/A]}A(E1) := E2{P}

Reasoning About Arrays

` A{E1 ← E2}(E1) = E2

E1 6= E3 ⇒` A{E1 ← E2}(E3) = A(E3)

Termination

If we assume that all functions in expressions terminate then total correctness is as partial correctness except for the WHILE rule.
In this case:
` [P ∧ S ∧ (E = n)]C[P ∧ (E < n)], P ∧ S ⇒ E ≥ 0

` [P ]WHILE S DO C[P ∧ ¬S]

Where E is an integer-valued expression and n is an auxilliary variable not occuring in P , C, S and E.

Verification Conditions

We require annotation in the following places:

1. Before each command Ci in a sequence C1;C2; . . . ;Cn which is not an assigment command

2. After the word DO in WHILE and FOR commands
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Rule VCs
Assignment P ⇒ Q[E/V ]
Sequencing [{P}C1; . . . ;Cn−1{R}]V C , [{R}Cn{Q}]V C (for assignments, R = Q[E/V ])

Blocks [{P}C{Q}]V C (note block and P, Q variables disjoint)
Single If (P ∧ S)⇒ Q, [{P ∧ S}C{Q}]V C

Double If [{P ∧ S}C1{Q}]V C , [{P ∧ ¬S}C2{Q}]V C

While P ⇒ R, R ∧ ¬S ⇒ Q,[{R ∧ S}C{R}]V C

For Rule
P ⇒ R[E1/V ]

R[E2 + 1/V ]⇒ Q
[{R ∧ E1 ≤ V ∧ V ≤ E2}C{R[V + 1/V ]}]V C

, (with usual conditions on loop variables)

For Axiom P ∧ E2 < E1 ⇒ Q
Array Assignment P ⇒ Q[A(E1 ← E2)/A]

Termination

Most rules are unchanged, but the WHILE rule has these other verification conditions:

• P ⇒ R

• R ∧ ¬S ⇒ Q

• R ∧ S ⇒ E ≥ 0

• [[R ∧ S ∧ (E = n)]C[R ∧ (E < n)]]V C

Program Refinement

[P,Q] = {C | ` [P ]C[Q]}

This is added to the syntax of a programming language to give a wide spectrum language. However, such programs are not
directly executable. Note that in such a language strictly every command should be represented as a single element set.

Rule Refinement
Skip [P, P ] ⊇ {SKIP}

Assignment [P [E/V ], P ] ⊇ {V := E}
Precondition Weakening [P,Q] ⊇ [R,Q] if ` P ⇒ R

Postcondition Strengthening [P,Q] ⊇ [P,R] if ` R⇒ Q
Sequencing [P,Q] ⊇ [P,R]; [R,Q]

Blocks [P,Q] ⊇ BEGIN VAR V; [P,Q] END
Single If [P,Q] ⊇ IF S THEN [P ∧ S,Q] if ` P ∧ ¬S ⇒ Q
Double If [P,Q] ⊇ IF S THEN [P ∧ S,Q] ELSE [P ∧ ¬S,Q]
While [P, P ∧ ¬S] ⊇ WHILE S DO [P ∧ S ∧ (E = n), P ∧ (E < n)] if ` P ∧ S ⇒ E ≥ 0

Higher Order Logic

Types are expressions that denote sets of values. Terms of HOL must be well-typed in that a type assignment to subterms exists.
All binding is done via λ abstractions only, but syntactic sugar is provided for the common cases. Tuples are iterated pairs and
may contain hetrogenous types.

Conditionals are represented as t → (t1|t2). Hilberts ε-operator lets you refer to values you know exist but aren’t able to
write down. It is defined by ` ∀P x.P x ⇒ P (ε P ). Note that if the variable f does not occur in t then λx.t is equivalent to
εf.∀x.f(x) = t. This can be used to construct pattern matching functions and recursive functions.
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Peano’s Axioms

1. There is a number 0

2. There is a function Suc called the successor function such that if n is a number then Sucn is a number

3. 0 is not the successor of any number

4. If two numbers have the same successor then they are equal

5. If a property holds of 0 and if whenever it holds of a number then it also holds of the successor of the number, then the
property holds of all numbers

Primitive Recursion

` ∀x : α.∀f : a→ num→ α.∃fun : num→ α.(fun 0 = x) ∧ (∀m.fun(Sucm) = f (funm)m)

For example: ` + = PrimRec (λx1.x1)(λf mx1.Suc(f x1))

Primitive recursion can be extended to other structures such as lists.

Semantic Embedding

With deep embedding, we define the semantics of a term structure by building a function in the host logic which pattern matches
on it and assigns some meaning function. This allows theorems to be proved about the embedded terms very simply. With
shallow embedding, notational conventions are set up for translating term structures into logic terms in a syntactic manner:
however, only theorems in the embedded language are provable (i.e. we cannot quantify over program terms).

We can embed our programming language in HOL using the techniques I will go on to describe. Define the type state = string →
num, so we can say, e.g. [[X + 1]] = λs.s′X ′ + 1.

Now we can say that Spec(p, c, q) = ∀s1s2.p s1 ∧ c(s1, s2)⇒ q s2 where the semantics of commands are:

Rule Semantics
Skip [[SKIP ]](s1, s2) = s1 = s2

Assignment [[V := E]] = Assign(′V ′, [[E]])
Sequencing [[C1;C2]] = Seq([[C1]], [[C2]])

If [[IF B THEN C1 ELSE C2]] = If([[B]], [[C1]], [[C2]])
While [[WHILE B DO C]] = While([[B]], [[C]])

Where:

Assign(v, e)(s1, s2) = (s2 = Bnd(e, v, s1))

Bnd(e, v, s) = λx.(x = v → e s|s x)
Seq(c1, c2)(s1, s2) = ∃s.c1(s1, s) ∧ c2(s, s2)
If(b, c1, c2)(s1, s2) = (b s1 → c1(s1, s2)|c2(s1, s2))
While(b, c)(s1, s2) = ∃n.Iter(n)(b, c)(s1, s2)

Iter(0)(b, c)(s1, s2) = F

Iter(Succ n)(b, c)(s1, s2) = If(b, Seq(c, Iter(n)(b, c)), Skip)(s1, s2)

Note that using these definitions all the rules of Hoare logic can be turned into logical statements about which Spec terms imply
each other (with universally quantified free variables) and vice versa.

Termination

A termination assertion is of the form Halts(p, c) = ∀s1.p s1 ⇒ ∃s2.c(s1, s2), This is sufficient for languages without nondeter-
minism i.e. where ` Det[[C]] given Det c = ∀s s1 s2.c(s, s1) ∧ c(s, s2)⇒ (s1 = s2). It is straightforward to derive HOL theorems
stating termination of all commands except for WHILE, which is shown here (including the variant x):

∀b c x.(∀n.Spec((λs.p s ∧ b s ∧ (s x = n)), c, (λs.p s ∧ s x < n))) ∧Halts((λs.p s ∧ b s), c)⇒ Halts(p,While(b, c))
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Weakest Preconditions

Define p⇐ q = ∀s.q s⇒ p s to mean p is weaker than q. Now we have:

Weakest P = εp.P p ∧ ∀p′.P p′ ⇒ (p⇐ p′)

wlp(c, q) = Weakest(λp.Spec(p, c, q))

wp(c, q) = Weakest(λp.TotalSpec(p, c, q))

In practice we use the facts that:

` wlp(c, q) = λs.∀s′.c(s, s′)⇒ q s′

` wp(c, q) = λs.(∃s′.c(s, s′)) ∧ ∀s′.c(s, s′)⇒ q s′

The relationship to Hoare logic is that:

` Spec(p, c, q) = ∀s.p s⇒ wlp(c, q) s

` TotalSpec(p, c, q) = ∀s.p s⇒ wp(c, q) s

Rule WP WLP
Skip q

Assignment λs.q(Bnd([[E]]s) ′V ′ s)
Double If λs.([[B]]s→ wp([[C1]], s)|wp([[C2]], s)) λs.([[B]]s→ wlp([[C1]], s)|wlp([[C2]], s))
Sequencing ` Det [[C1]]⇒ wp([[C1]], wp([[C2]], q)) ` wlp([[C1]], wlp([[C2]], q))

While ` Det C ⇒ ∃n.Iter_wp n [[B]] [[C]] q s ` ∀n.Iter_wp n [[B]] [[C]] q s

Where:

Iter_wp 0 b c q = ¬b ∧ p

Iter_wp (n+ 1) b c q = b ∧ wp(c, Iter_wp n b c p)
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