Statics

Friction

Hydrostatics

Upthrust Centre Of Mass

^E Mass $\underline{R}_{COM} = \frac{\sum_{i} m_{i} \underline{r}_{i}}{\sum_{i} m_{i}}$

 $F_{S,\max} = \mu_S R$

No shear forces

 $F_D = \mu_D R$

Isotropism $P_B = P_T + \rho g h$

 $F_U = m_F g$

 $W = \int_{\underline{x}_{start}}^{\underline{x}_{end}} \underline{F} . d\,\underline{x}$

Work that would have to

be done to put system into the state, starting from a common reference point $P = \frac{dU}{dt} = \underline{F} \cdot \frac{dx}{dt} = \underline{F} \cdot \underline{y}$

Dynamics

Work Done

Potential Energy

Power

Relativity

Fraction Of C	$\beta = \frac{v}{c}$
Gamma Factor	$\gamma = \frac{1}{\sqrt{1-\beta^2}}$
Lorentz Transform	$x' = \gamma(x - vt)$
	y'=y, z'=z
	$t' = \gamma(t - \frac{vx}{c^2})$
Doppler Effect (Towards Observer)	$v = \sqrt{\frac{c+v}{c-v}}v_0$
Momentum	$\underline{p} = \gamma_u m \underline{u}$
Force (Straight Line)	$F = \gamma^3 ma$
Energy	$E = \gamma_u mc^2$
E – p Invariant	$E^2 - p^2 c^2 = m^2 c^4$
E – p Transform	$p_x' = \gamma(p_x - \frac{vE}{c^2})$
	$p_y' = p_y, p_z' = p_z$
	$E' = \gamma(E - vp_x)$
Gravitation	
Force	$\underline{F} = \frac{-GMm}{r^2} \hat{\underline{r}}$
Field	$\varphi(r) = \frac{F}{2} = a$

r^{2} r^{2} r^{2}
$g(\underline{r}) = \frac{F}{m} = \underline{a}$
$U(r) = \frac{-GMm}{r}$
$\phi(r) = \frac{U(r)}{m}$
$\phi(\underline{r}) = -\int_{\underline{\infty}}^{\underline{r}} \underline{g} . d \underline{s}$
$\phi = \int \underline{g} . d \underline{A} = 4 \Pi G M$

Rotational Dynamics

Velocity	$\underline{\omega} = \frac{d\theta}{dt} = \frac{v}{r}$
Moment Of Inertia	$I = \int r^2 dm$
Momentum	$\underline{L} = I \underline{\omega} = \underline{r}^{\wedge} \underline{p}$
Torque	$\underline{G} = \frac{d\underline{L}}{dt} = \underline{r}^{\wedge} \underline{F}$
Kinetic Energy	$E_{ROT} = \frac{I\omega^2}{2}$
Parallel Axis	$I = I_{COM} + M \left x \right ^2$
Perpendicular Axis	$I_Z = I_X + I_Y$

Keplers Laws

Orbits are ellipses with the sun at one focus Radius vector from the sun to a planet sweeps out equal area in equal time

 $T^2 \propto R^3$